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Video Quality 
Assessment

T
his article describes 
how to perform a video 
quality subjective test. 
For companies, these 
tests can greatly facili-

tate video product devel-
opment; for universities, re-

moving perceived barriers to 
conducting such tests allows expand-

ed research opportunities. This tutorial as-
sumes no prior knowledge and focuses on 

proven techniques. (Certain commercial 
equipment, materials, and/or programs are 

identified in this article to adequately specify the ex-
perimental procedure. In no case does such identification 

imply recommendation or endorsement by the National Tele-
communications and Information Administration, nor does it imply 

that the program or equipment identified is necessarily the best available 
for this application.)

Video is a booming industry: content is embedded on many Web sites, delivered over 
the Internet, and streamed to mobile devices. Cisco statistics indicate that video exceeded 50% of total mobile 

traffic globally or the first time in 2012 and predict that over two-thirds of the world’s mobile data traffic will be video by 
2018 [1]. Each company must make a strategic decision on the correct balance between delivery cost and user experience. 
This decision can be made by the engineers designing the service or, for increased accuracy, by consulting users [2].
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Video quality assessment requires a combined approach that 
includes objective metrics, subjective testing, and live video mon-
itoring. Carefully conducted video quality subjective tests are 
extremely reliable and repeatable, as is shown in [3, Sec. 8]. This 
article provides an approachable tutorial on how to conduct a 
subjective video quality experiment. Our goal is to encourage 
more companies and universities to perform subjective tests.

A subjective video quality test uses a small set of short video 
sequences (e.g., 8–20 s) to measure people’s opinions of the quality 
of different video processing options. These tests focus on people’s 
current opinion, as opposed, e.g., to opinions of an entire movie. 
The goal is to make an impartial judgment about opinion trends. 
Example applications include choosing between different coding 
algorithms, comparing one coder at different bit rates, comparing 
two implementations of the same algorithm, optimizing coder 
parameters, improving an error concealment algorithm, or select-
ing a maximum packet loss rate for a service. Video quality subjec-
tive tests isolate one factor: video quality. Issues that might 
confound the experiment data should be excluded [e.g., audio, 
scene composition, aesthetics, display, environment, device inter-
face, two-way communication, and quality of experience (QoE)].

International Telecommunications 
Union RECOMMENDATIONS
The International Telecommunications Union (ITU) recommenda-
tions most directly applicable to this tutorial are ITU-R Rec. 
BT.500 (2012), Methodology for the Subjective Assessment of the 
Quality of Television Pictures; ITU-T Rec. P.910 (2008), Subjective 
Video Quality Assessment Methods for Multimedia Applications; 
and ITU-R Rec. BT.1788 (2007), Subjective Assessment of Multiple 
Video Quality (SAMVIQ). ITU-R Rec. BT.500 focuses on video qual-
ity and image quality in a home television environment; ITU-T 
Rec. P.910 focuses on video quality, videotelephony, videoconfer-
encing, and storage/retrieval applications; and ITU-R Rec. BT.1788 
identifies one particular rating method. The current version of 
each recommendation is distributed freely on the ITU Web site 
(http://www.itu.int/). These procedures remove all distractions 
from the environment to eliminate variables that might bias the 
test. The environment is basically an idealized living room: quiet 
and devoted to this one task. These ITU recommendations assume 
the reader has some prior knowledge.

The scope of ITU-R Rec. BT.500 is broadcast television and, 
therefore, entertainment video in either standard-definition or 
high-definition format. BT.500 specifies highly controlled 
monitor calibration and lighting conditions (e.g., the ratio of 
luminance of inactive screen to peak luminance should be #
0.02). The monitor calibration techniques focus on the needs 
of broadcasters, so an amateur may have difficulty calibrating 
consumer-grade equipment.

ITU-T Rec. P.910 was designed for video systems at lower bit 
rates and quality than broadcast television. The wording of P.910’s 
focus may look odd today because terminology has changed. P.910 
is appropriate for high-definition television (HDTV) through quar-
ter common intermediate format (QCIF) resolution (176#144). 
P.910 specifies exact lighting conditions, but they are easier

to recreate than BT.500’s lighting conditions. The monitor is not 
calibrated, which is more appropriate for computers, mobile 
devices, and consumer-grade televisions. ITU-R Rec. BS.1788 is 
commonly referred to by the acronym of its title: SAMVIQ. This 
recommendation defines a particular rating scale and method.

Work is underway in the ITU to develop recommendations better 
suited to new technologies. One example is the newly approved 
ITU-T Rec. 913 (2014) Methods for the subjective assessment of 
video quality, audio quality and audiovisual quality of Internet video 
and distribution quality television in any environment. This 
recommendation describes techniques for situations not covered by 
BT.500 and P.910, including the use of natural lighting or a 
distracting environment (e.g., a cafeteria or bus). Published at the 
end of 2014, [51] contains a summary of the differences between the 
traditional techniques found in this article and P.913. 

EXPERIMENT DESIGN

TERMS AND DEFINITIONS
■■ Source sequence (SRC) is the unimpaired video sequence

(i.e., the content).
■■ Original refers to the original version of each SRC (e.g.,

broadcast quality).
■■ Processed video sequence (PVS) is the impaired version of

a video sequence.
■■ Clip refers to any video sequence, SRC or PVS.
■■ Hypothetical reference circuit (HRC) is a fixed combina-

tion of a video encoder operating at a given bit rate, network
condition, and video decoder. The abbreviation HRC is pre-
ferred when vendor names should not be identified.

■■ Full matrix design consists of n  SRCs and m  HRCs. All
combinations of SRCs and HRCs are included in the experi-
ment for a total of n m#^ h PVSs.

■■ Partial matrix design splits the experiment into two or more
smaller matrixes. For example, a two-matrix experiment would
have two scene pools (pool A and pool ,B  with nA and nB

SRCs, respectively) and two HRC pools (pool A  and pool ,B
with mA and mB HRCs, respectively). All combinations of pool
A SRC and HRCs are included, plus all combinations of pool B
SRC and HRCs, for a total of n m n mA A B B# #+^ h PVSs.

GOAL OF EXPERIMENT AND DESIGN CONSEQUENCES
The first goal of a video quality subjective test is to answer a spe-
cific question about video encoding, transmission, or decoding. 
These questions are typically posed as comparisons between one 
or more variables. The analysis will directly compare pairs of HRCs 
using identical SRCs, typically via a full matrix design. For exam-
ple, Younkin and Corriveau [4] use a full matrix design to analyze 
the impact of playback error severity on quality perception.

The full matrix design allows all HRCs to be directly compared 
and produces improved accuracy for some analysis techniques (see 
the section “Choosing a Subjective Scale”). The disadvantage is 
that less information is obtained about the impact of different 
source material on the HRCs. This is undesirable because codecs 
yield very different quality depending upon the scene content, as 
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can be seen in Figure 1, taken from [5]. The x-axis displays the bit 
rate, and the y-axis displays the mean opinion score (MOS). The 
boxes and whiskers in Figure 1 show the distribution of PVSs 
within an HRC. Some of the plotted HRCs span more than half of 
the absolute category rating (ACR) scale.

Twice as many SRCs can be included in a partial matrix design 
of two matrices, compared to a full matrix design. This alleviates 
the subjects’ boredom. The partial matrix design allows direct 
comparisons only of HRCs within an HRC pool. For example, 
HRCs from pool A cannot be directly compared with HRCs from 
pool B. Pinson et al. [5] use a partial matrix design to compare 
the quality of the H.264 and MPEG-2 coders, both with and with-
out packet loss.

Both full matrix and partial matrix designs depend upon two 
variables: SRC and HRC. A third variable—the environment—is 
needed to answer questions about interactions between the 
video signal and the viewing environment. For example, 
Brunnström et al. [6] explore the relationship between video 
quality and the viewing angle of the subject to the screen. Thus, 
Brunnström’s HRC definitions specified the viewing angle.

The second video quality subjective test goal is to train a metric 
or algorithm. For example, an objective video quality metric esti-
mates the quality ratings that would result from a subjective exper-
iment. The accuracy of the resulting metric depends upon the 
quantity and variety of training data. Thus, the optimal experiment 
design maximizes the number of SRCs and HRCs for the available 
number of PVSs. A random pairing of each SRC and a different 
HRC will accomplish this goal, though most engineers are trou-
bled by the asymmetry. Voran and Wolf [7] provide an example of a 
subjective experiment designed specifically to train a metric. A full 
matrix or the partial matrix design is usually less effective, because 
fewer SRC and HRC can be analyzed. Some experimenters choose 
a full or partial matrix design anyway, because they want to use the 
same subjective test for two purposes: to answer a question and to 
train a metric. Huynh-Thu and Ghanbari [8] provide an example.

The third video quality subjective test goal is to analyze the 
performance of an existing objective video quality metric or algo-
rithm. The constraint here is not the design of the test—both the 
full matrix and the partial matrix designs are suitable—but rather 
the fact that training data cannot be used to test the model’s per-
formance. Ideally, this prohibition includes scene content, coder 
implementations, and coder/network settings (e.g., packet loss 
rate, and bit rate). Voran and Catellier [9] provide an example of 
how to design a subjective test to both train and test a metric. 
This article describes a speech quality experiment; however, the 
experimental design issues are the same.

Video quality subjective tests can be used in combination 
with other subjective tests to understand larger quality implica-
tions. ITU-T Rec. P.1301 [10] demonstrates this idea for tele-
meeting systems, and an applied example can be found in [11].

SRC, HRC, AND PVS SELECTION
Video quality subjective tests typically use short sequences (e.g., 
8–10 s duration). Pinson et al. [12] provide guidance on choosing 
a balanced and well-designed set of scenes for a subjective test. 

This guidance includes avoiding offensive content, choosing 
scenes that evenly span a wide range of coding difficulty, deciding 
whether or not scene cuts should be allowed, and selecting scenes 
with unusual properties. It is important to use high-quality foot-
age because otherwise the quality impairments in the SRC can 
obscure any effects of the HRC in the test results. Niu and Liu [13] 
explain the differences between professional and amateur videog-
raphy and provide objective criteria for identifying professional 
video sequences. Amateur footage typically contains aesthetic 
problems that trigger low video quality ratings (e.g., focus control, 
color palette, camera motion, shot length, and visual continuity). 
The Consumer Digital Video Library (www.cdvl.org) provides free 
downloads of broadcast-quality footage for research and develop-
ment purposes. Another Web site that offers free footage is http://
www.irccyn.ec-nantes.fr/spip.php?article541. 

The range of PVS quality should span the scale used to con-
duct the test (see the section “Choosing a Subjective Scale”). 
Experiments that contain a narrow range of quality will be frus-
trating for the subjects and researcher alike since the data are 
unlikely to show any significant results. It is better to design 
experiments that span a wide range of quality—or at least a wide 
enough range that meaningful results can be found.

The goal of many subjective experiments is to compare and 
contrast the quality of various video impairments. This analysis 
is only possible when HRC creation is limited by two con-
straints: 1) the definition of each HRC is constant throughout 
the experiment and 2) if two HRCs are to be compared, then 
those HRCs must be paired with the same set of SRCs.

The term HRC implies that all PVSs associated with that HRC 
were created using a constant set of control parameters. A partic-
ularly popular HRC definition specifies codec A, profile B, con-
stant bit rate C, and packet loss rate D. As a side effect of this 
design, difficult-to-encode SRCs will yield a very wide range of 
quality (excellent to bad), while easy-to-encode SRCs will yield a 
narrow range of quality (excellent to fair). An alternative 
approach tries to produce equivalent quality for all PVSs 
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[FIG1]  For coding-only impairments, a quality comparison of 
H.264 (solid blue) and MPEG-2 (dotted red): the box-plot 
identifies minimum, 25%, mean, 75%, and maximum MOS. 
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associated with a single HRC. This can be done with variable bit 
rate encoding or a constant quantization profile value. The prob-
lem is that it becomes difficult to reach conclusions about the 
coder’s behavior at different bit rates.

TEST ENVIRONMENT
Traditionally, subjective video quality tests are performed in a 
controlled laboratory environment. This reduces the effect of 
extraneous variables on the experiment without requiring a spe-
cialized space or great expense. While the potential impact of 
some elements is debatable, the traditional controlled environ-
ment demonstrates your expertise to the research community.

■■ Walls: The walls of the test chamber should be plain white
and not show potentially distracting objects (e.g., pictures,
clock, and wires). Windows must be covered with light-blocking
curtains. Temporary room dividers encourage the illusion of
a nondistracting chamber.

■■ Floor: The floor should be a neutral, nondistracting color.
Solid gray is traditional.

■■ Furniture: Only necessary furniture should be in the test
chamber. The chair provided to subjects should not have
wheels. This will encourage the subject to keep a constant
viewing distance throughout the test. An upright chair helps
to encourage attention on the task.

■■ Lighting: See ITU-R Rec. BT.500 clause 2.1 or ITU-T Rec.
P.910 clause 7.1 for lighting conditions. The listed specifica-
tions can be met inexpensively using a light meter, full spec-
trum bulbs, and variable intensity lamp controls.

■■ Viewing distance: See ITU-R Rec. BT.500 clause 2.1 or
ITU-T Rec. P.910 clause 7.1 for details. For most experiments,
the monitor and chair should be positioned at a defined view-
ing distance. The viewing distance is traditionally measured in
picture heights: four to six times picture heights (H) for stan-
dard definition television (i.e., 4H to 6H), 2H to 3H for HDTV,
and 8H for smartphones and other very small monitors [14].

■■ Monitor: BT.500 encourages the use of a professional qual-
ity monitor to eliminate a potentially confounding variable.
For P.910, choose a monitor that matches the application.

■■ Background noise: The test chamber must be quiet, with
minimum background noise. If a computer is used to play the
videos, the computer should be outside the test chamber.

■■ Bystanders: While a subject is running through the test,
the chamber should be used for no other purpose. In some
cases, the test chamber will have two or more subjects and
the experimenter. People who are interested in seeing the test
results come out a certain way should not interact with the
subjects, perform the data analysis, or design the test (e.g.,
product managers).

NUMBER OF SUBJECTS, STIMULI, AND TEST SESSIONS
The reliability of ratings depends upon averaging the data across 
multiple subjects. While BT.500 recommends a minimum of 15 
subjects, a recent study by Pinson et al. [15] endorses a minimum 
of 24 subjects. Fewer subjects may be used to indicate trending.

Subjects have a limited attention span, and so the typical chal-
lenge is fitting all impairments of interest into a set of test ses-
sions that one person can reasonably watch. Preferably, each 
session should last no more than 20 min, and each subject should 
spend no more than 1 h rating video. Longer experiments require 
additional motivation or variety to keep the subjects alert. Pay-
ment is the traditional motivator. The best way to add variety into 
an experiment is to increase the number of SRCs.

Subjective experiments should use at least eight different SRCs. 
Differences between SRCs are a major variable for every subjective 
experiment. A large and varied pool of scenes minimizes the risk 
that the subjective experiment will reach an erroneous conclusion. 
This effect is demonstrated in Pinson et al. [12]. Whenever possi-
ble, we advocate the use of the partial matrix test design over a full 
matrix design. Each full matrix within the partial matrix test is 
associated with a different set of SRCs and HRCs. This adds much 
needed visual interest for the subject. HRCs that need to be 
directly compared should be put within the same matrix. 

CHOOSING A SUBJECTIVE SCALE
The choice of subjective scale is surprisingly contentious. Each 
scale has strengths and weaknesses. Choose the scale that best 
matches your goal. There different scales for single stimulus 
(SS) and double stimulus (DS) experiments. In an SS test, the 
subject watches and rates each video sequence separately. In a 
DS test, the subject watches two or more versions of the same 
source video sequence during the rating process.

LISTING OF SUBJECTIVE SCALES
For the ACR from ITU-T Rec. P.910, the subject watches a video 
sequence and then is asked to rate it on a discrete, five-level 
scale (see Figure 2). Each level is associated with a word and a 
number: excellent =  5, good =  4, fair =  3, poor =  2, and 
bad =  1. Variations of the scale include nine levels, 11 levels, 
and a continuous scale with labels only at the end points. A con-
tinuous scale is a continuous line when presented to the subject 
and converted to a 100-level scale for the purposes of data analy-
sis. Alternative labels may be needed for some experiments. 
ITU-T Rec. P.800, a speech quality subjective testing standard, 
provides alternate ACR wording examples for a listening-effort 
scale, and a loudness-preference scale. ACR is an SS method.

ITU-T Rec. P.910 identifies a variant, ACR with hidden refer-
ence (ACR-HR). In ACR-HR, each original is included in the 
experiment but not identified as such. The ratings for the origi-
nals are removed from the scores of the associated PVSs during 
data processing. High-quality originals are critical when using 
ACR-HR. If the quality of the original SRC drops from excellent 
(score 5) to fair (score 3), the available ACR-HR scale decreases 
from four to two units. This causes an inherent bias in the data, 
when comparing PVSs associated with two different SRCs.

View A Rate A

[FIG2]  The ACR rating cycle: the subject watches video clip A and 
then rates A.
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The degradation category rating (DCR) method from P.910 
also appeared in an old version of BT.500 under the name DS 
impairment scale (DSIS). DCR presents stimuli to subjects in 
pairs (see Figure 3). The original is presented first, and the sub-
ject is told that this is the original. The stimulus to be rated is 
presented second. The subject rates the difference in quality on a 
discrete, five-level, impairment scale: imperceptible =  5, percepti-
ble but not annoying =  4, slightly annoying =  3, annoying =  2, 
and very annoying =  1. DCR is a DS method.

The pair comparison method from BT.500 also appears in 
P.800 under the name comparison category rating and in an
old version of BT.500 under the name double stimulus compari-
son scale (DSCS). A pair of stimuli is presented to the subject;
however, the order of stimuli is random (see Figure 4). If pair
comparison is used to compare original and processed
sequences (like DCR), then the original would be played first for
approximately half of the trials, and the PVS would be played
first for the rest of the trials. Pair comparison is the only
method that can directly compare two different impaired ver-
sions of the same video sequence.

The subjects rate the quality of the second stimulus com-
pared to the quality of the first on a discrete, seven-level scale: 
much better =  3, better =  2, slightly better =  1, about the 
same =  0, slightly worse =  –1, worse =  –2, and much worse  
=  –3. Variations include a continuous scale (100 levels) and a 
discrete, two-level preference (better or worse).

The double stimulus continuous quality scale (DSCQS) 
method from BT.500 involves four presentations of two stim-
uli, A  and B  (see Figure 5). One of these is the original, 
assigned randomly to position A  or B . The subject is pre-
sented with stimulus ,A  then ,B  then A  again, and then B  
again. Afterward, the subject rates A  and B  separately, each 
on a continuous scale showing the ACR labels (excellent, 
good, fair, poor, or bad).

The SS continuous quality evaluation (SSCQE) method from 
BT.500 presents the subject with a stimulus of long duration 
(e.g., 5–30 min). The subject has a slider that is constantly 
moved to reflect the subject’s current opinion of the video qual-
ity (see Figure 6). Ratings are sampled every half second. 
SSCQE was intended for the analysis of monitoring applications 
and uses a continuous scale.

The SAMVIQ method from ITU-R Rec. BT.1788 uses a contin-
uous scale, marked with the ACR labels. The test uses a computer 
interface, which presents the subject with multiple versions of 
the same SRC (see Figure 7). The subject may play each stimulus 
multiple times and may choose the order in which stimuli are 
rated. One of the stimuli is the original and explicitly labeled as 
such. Another stimulus is a hidden reference—identical to the 
original, but not labeled. The subject rates each version of one 
SRC and adjusts the ratings relative to each other.

ANALYSIS OF SINGLE STIMULUS RATING METHODS
ACR with a five-level scale maximizes cognitive ease and the 
number of video sequences rated each minute [16]. ACR pro-
duces very repeatable subjective results, even across different 

groups of subjects, provided that the test design and instructions 
are carefully prepared [17]. Studies [16]–[18] compared ACR rat-
ings with ratings gathered from DSCQS, DCR, and SAMVIQ. The 
rating scale choice had a minor impact on data accuracy.

The SS methods (ACR and SSCQE) have two weaknesses. The 
first is that some types of impairments are difficult to detect 

View A View B
Rate

Preference

[FIG4]  Pair comparison rating cycle: the subject watches video 
sequence A, then watches video sequence B, and rates B 
relative to A.
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[FIG5]  The DSCQS rating cycle: the subject watches video clip A, 
then B, A again, B again, and then rates A and B.

Watch for
Quality Change

Update
Rating

[FIG6]  The SSCQE rating cycle: watch a long video sequence and 
continuously update a slider to reflect current opinion of the 
video quality.

Rate A, B, C, ...

View
SRCView

A

View
B

[FIG7]  The SAMVIQ rating cycle: the subject watches several 
versions of one SRC in any order. The ratings are adjusted until 
the subject is satisfied.

View
Original

View
Processed

Rate Loss

[FIG3]  The DCR rating cycle: the subject watches the original 
video, then watches a processed version of that video, and 
finally rates the level of impairment.
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without an explicit comparison between two video sequences. For 
example, small color shifts are difficult to detect using ACR tests.

The second weakness is that SS ratings do not differentiate 
between impairments in the SRC and impairments intentionally 
added to the processed sequence. SS scores are often biased by 
subjects’ opinions of the scene’s aesthetics, composition, produc-
tion quality, and subject matter, despite instructions to the con-
trary. ACR-HR offsets this flaw by removing the original video’s 
rating during data analysis. Thus, ACR-HR ratings look more like 
DS ratings (i.e., a score of “5” on the ACR-HR scale means that 
the original video and PVS have identical quality). This technique 
only works better with high-quality SRCs.

SSCQE has strengths and weaknesses similar to ACR. 
SSCQE has the potential for allowing the most evaluations from 
a single subject in a short time, because there are no pauses 
between stimuli for ratings. Pinson and Wolf [19] demonstrated 
that SSCQE can be as accurate as DSCQS and pair comparison 
for rating short video sequences by using multiple randomiza-
tions, hidden reference removal, and the SSCQE score at the 
end of each sequence. A variety of devices have been used to 
implement an SSCQE slider, including a game station steering 
wheel [20] and a sensory glove [21]. True SSCQE data analysis is 
complex, as it requires time series analysis.

ANALYSIS OF DOUBLE STIMULUS RATING METHODS
DS methods address both problems of the SS method, at least to 
some extent. DS methods ask one of two basic questions.

The first DS question is “Which of these two sequences do 
you like better?” Pair comparison is the only DS method that 
directly answers this question. Inversion errors can occur but 
seem to be rare (e.g., the subject marks “the second sequence is 
much better” when they intended to mark “the second sequence 
is much worse”). Pair comparison takes approximately twice as 
long as ACR for the same number of stimuli.

Pair comparison is the obvious choice for detecting very 
small differences between two different impaired versions of the 
same video sequence. Doherty et al. [22] demonstrate the use of 
pair comparison to detect differences between frame rate con-
version algorithms.

The second DS question is “How well does the impaired 
sequence reproduce the reference sequence?” DCR answers this 
question explicitly. DSCQS, SAMVIQ, and ACR-HR answer this 
question implicitly.

DCR takes approximately twice as long as ACR for the same 
number of stimuli. This is as fast as any DS method can claim, and 
inversion errors do not occur. Tominaga [16] concludes that DCR 
is more desirable than DSCQS or SAMVIQ, because of improved 
speed and ease of use, without loss of accuracy. DCR cannot be 
used to measure quality improvements—the rating scale does not 
allow a subject to say that the PVS is of higher quality than the 
source. DCR is the only method where subjects are unambigu-
ously instructed to rate the perceptual difference between an origi-
nal sequence and an impaired version of that sequence.

A quirk of DCR is that the original video will not be scored as 
perfect. That is, if the original video is played identically as both 

the “original” and “processed” video in Figure 3, the rating will 
be slightly lower than five. This imposes a systematic downward 
shift on all scores that bothers some researchers. (Pair compari-
son is the only subjective method that is likely to yield perfect 
scores for original video sequences.) This bias causes no prob-
lems for the data analysis.

DSCQS takes approximately four times as long as ACR for 
the same number of stimuli. The repeated viewings of stimuli A  
and B  are intended to yield improved accuracy per subject for 
small quality differences, but this has not been proven.

Inversion errors are a problem for DSCQS. Inversion errors 
are impossible to detect and remove from the data, and this is 
perhaps the reason why DSCQS failed to show improved accu-
racy in [16] and [18]. It should be possible to avoid DSCQS 
inversion errors using an automated subjective testing system 
that swaps the order of the fourth and fifth steps in Figure 5.

SAMVIQ takes approximately twice as long as ACR for the 
same number of stimuli. SAMVIQ is slowed down by the ability 
of subjects to repeatedly play and compare sequences, yet sped 
up by presenting all versions of each SRC to the subject 
simultaneously. SAMVIQ is the only method that allows subjects 
to directly compare multiple versions of a single SRC.

The advantage of SAMVIQ is improved accuracy. SAMVIQ 
with 15 subjects is as precise as ACR with more than 22 subjects 
[17]. An open question is whether or not SAMVIQ’s improved 
accuracy per subject yields an additional advantage for an 
experiment that focuses on a narrow range of quality.

DISCRETE VERSUS CONTINUOUS
Discrete levels are used for ACR, DCR, and pair comparison. Con-
tinuous scales are used for SSCQE and DSCQS. Researchers have 
explored continuous scales and different numbers of discrete lev-
els for ACR and pair comparison. Tominaga et al. [16] showed that 
a five-level discrete scale provides a much easier cognitive task for 
the subject than an 11-level discrete scale or a continuous scale. 
Studies [16]–[18] demonstrate that the continuous scales do not 
improve measurement accuracy. This makes sense; research on 
human thought indicates that people can only hold about seven 
items in immediate memory [23]. (The Harvard Mind Brain 
Behavior Event Video Archive provides a nice summary of [23] at 
minute 8:30 of the video “The Cognitive Revolution at Fifty Plus 
or Minus One: A Conversation with Jerome Bruner, Susan Carey, 
Noam Chomsky, and George Miller—Part 1.”) 

When using a discrete scale, researchers disagree on whether 
or not the level numbers should be displayed to the subject. No 
consensus exists on this subject.

IMPLEMENTATION

PLAYING BROADCAST-QUALITY VIDEO 
on A TELEVISION
The ideal video playback system plays uncompressed video flaw-
lessly. Why use uncompressed video? With uncompressed video 
and perfect rendering come the guarantee that the playback sys-
tem does not add new impairments to the video. 
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This ideal television playback/capture system costs about 
US$10,000 excluding the monitor, a cost that has been fairly con-
sistent for the past decade. The components consist of a multiple 
core computer, a redundant array of independent disks (RAID),  
and a specialized board to play video from the RAID to the serial 
digital interface (SDI) high-definition SDI (HD-SDI) or high-defini-
tion multimedia interface (HDMI). The following companies cur-
rently produce professional grade video capture and playback cards 
that are compatible with professional editing suites: AJA, Blue-
fish444, Blackmagic, and Matrox. Bit-perfect playback and capture 
must be proven, which requires two systems (i.e., system 1 plays 
the video, system 2 captures it, and then a pixel-by-pixel compari-
son is performed). Common problems include insufficient RAID 
speed, operating system interruptions, antivirus software interrup-
tions, and driver incompatibilities.

The alternative is to use dedicated hardware. There are too 
many professional-grade devices available to list in this article. 
Most of these devices compress the video slightly (e.g., four to 
ten times). Professional video devices ensure reliable video play 
and record capability, usually with no perceptual impairment.

PLAYING VIDEO on A COMPUTER MONITOR
The ideal video playback system plays uncompressed, progressive 
video flawlessly from a computer hard drive to its monitor. If 
compressed playback is acceptable, the computer setup is simpli-
fied and the price drops. For some devices, only compressed video 
playback is easily available (e.g., smartphones), and reliable play-
back requires substantial compression (e.g., 30–250 times). Any 
added impairment from the coder, decoder, or display will con-
found the research data and may cause the data analysis to be 
misleading. To avoid this problem, identically compress all video 
sequences for the purposes of playback only. That is, after the vid-
eos have been impaired as specified in the experiment design, re-
encode all videos at the same (higher) bit rate for playback 
purposes. The goal is that any added playback impairments will 
be imposed identically on all videos.

When using a computer video playback system, you must 
calculate the appropriate level of compression yourself. The 
highest bit rate that guarantees flawless playback will minimize 
the perceptual impact of the recompression. To find this bit 
rate, encode a large variety of high-quality SRC, and play them 
to the target display repeatedly, while looking for playback prob-
lems (e.g., intermittent pauses and reduced frame rate).

THE TEST SESSIONS: AUTOMATED, 
EDITED, OR MANUAL
There are three options for playing video and recording scores 
during the actual subjective test: automated playback and scor-
ing, edited sessions, and manual sessions.

When playing uncompressed or lightly compressed progressive 
video to a computer monitor, automated software provides an elegant 
solution for subjective testing. The software should identify subjects 
by ID number (see the section “Conducting the Experiment”), gener-
ate a unique randomized order of sequence presentation for each 
subject, implement the chosen method’s rating cycle, ensure flawless 

playback for all subjects, present the rating scale after video playback 
finishes, record scores to a file, run each session separately, prompt 
for breaks, remove visual clutter from the screen, and either allow or 
disallow video replay. Three freely available software packages are 
AcrVQWin [24], Tally [25], and SubjectivePlayer [26].

If the subjects are allowed to replay the video, some subjects 
will, and this impacts the ratings. No consensus exists on the 
advisability of the replay option. Allowing replay provides the sub-
ject with an option other than guessing when their attention 
wandered—but conflicts arise with the usage paradigm for some 
video systems where rewind is not available. Thus, any article that 
describes a subjective test must specify whether or not videos 
could be replayed.

When subjective video quality testing began, the only option 
available was editing test tapes. Edited sessions work as well today 
as they did then, though the playback system is likely to be DVD, 
Blu-ray, three-dimensional (3-D) Blu-ray, or simply a long video 
file. No specialized software is required, and equipment costs are 
minimal. DVD or Blu-ray ensures consistent playback quality.

The concept is to edit together a long video sequence for each 
session. For example, when conducting an ACR test with 10-s 
sequences, the sequence would alternate between playing a 10-s 
sequence and playing 8 s of midlevel gray while the subject scores. 
This editing is simple yet prone to errors. A minimum of two differ-
ent sequence orderings must be created to minimize the impact of 
ordering effects (i.e., the quality of clip N influences the perceived 
quality of clip ) .N 1+  Order effects can be reduced by randomiz-
ing the sessions (e.g., one subject sees session A, B, and C; another 
subject sees session C, B, and A). Ratings are entered either on a 
paper score sheet or on a small mobile device. Unlike an automated 
test, the ratings are not synchronized with the video playback. The 
audio track and text overlays keep the subject synchronized (e.g., 
please score clip 1). Subjects will sometimes make a mistake, and 
get off by one in their scores (e.g., record the quality of clip 9 where 
they were supposed to score clip 8). Data entry errors can occur 
when copying paper rating sheets into a spreadsheet.

The last option is a fully manual experiment. The experi-
menter can manually play each sequence in the desired order, 
ask the subject to choose a rating aloud, and record that rating 
themselves. This approach seems inelegant and the experiment-
er’s behavior could influence ratings. It is, however, quite inex-
pensive and very practical.

We recommend playing midlevel gray between video 
sequences (i.e., Y =  128, Cb =  0, Cr =  0). The following MAT-
LAB code will create this JPEG image, for video graphics array 
(480#640):

imwrite(zeros(480,640,‘uint8’) + 128, 
‘Gray.jpg’, ‘jpg’);

PRETEST
The purpose of the pretest is to check the experiment design for 
flaws. The pretest allows design problems to be fixed before too 
much time and money have been invested in the subjective test. 
Start by viewing the PVSs yourself. The resulting distribution of 
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quality may show undesirable clusters. If you, the experiment 
designer, are unable to detect differences between most of your 
PVSs, the subjects will not either.

A pretest is often performed before some elements of the test 
are ready (e.g., no automation, no instructions, or an inappropriate 
environment). The pretest often includes only a subset of the 
scenes and impairments. A small, biased sampling of subjects (e.g., 
five to six coworkers or friends) is acceptable, because the goal is to 
look for design flaws. Example design flaws include problems sub-
jects experienced during the experiment, a narrow range of quality 
(e.g., no statistically significant conclusions can be reached), and 
data bunching (e.g., many clips with nearly identical quality). Con-
sider eliminating HRCs with nearly identical quality, when train-
ing or testing a model. Zieliński and Rumsey [27] identify potential 
sources of bias that should be considered during the pretest.

CONDUCTING THE EXPERIMENT
When administering the subjective test, the experimenter 
should not influence or bias any subject’s behavior. To the 
extent possible, each subject’s experience should be identical. 
The task of choosing an experiment administrator is very 
important. Good social skills and good communication skills 
are critical, as part of the administrator’s job is to put the sub-
jects at ease. The administrator must be guarded about the test 
itself and thus less likely to unintentionally influence the 
results. Questions that may influence the subject’s behavior 
should be answered only after the subject’s participation is over.

ETHICS AND INFORMED CONSENT
Awareness of ethical considerations in human testing arose from 
several infamous psychological and medical experiments. The 
Belmont Report [28], written in 1979 by the U.S. government, 
outlines the basic ethical principles in research involving human 
subjects. In 1991, the U.S. government published the Common 
Rule [29] for the protection of human subjects. While this policy 
applies only to U.S. Federal workers, it provides reasonable 
guidelines for ethical human testing and informed consent.

The first ethical consideration is privacy. Subjects’ names must 
be kept private, and the researcher must ensure that the rating data 
cannot be used to identify subjects, even accidentally. The easiest 
and safest way to accomplish this is to identify subjects by number 
and to never record the number/name association. Second, sub-
jects must be informed of potential risks. Video quality subjective 
experiments typically have no risk of benefit or harm. Third, sub-
jects should be given an informed consent form to read and sign. 
The Common Rule contains guidance on appropriate information 
to include, such as a brief summary of the purpose of the experi-
ment, the method used to keep people’s names confidential, any 
risk or benefit to the subject, notification that participation is vol-
untary, and who to contact with questions about research subjects’ 
rights or in the event of a research-related injury.

VISION TESTING
Vision testing is traditionally performed before the experiment 
begins. Unless you are an ophthalmologist, it is inappropriate to 

tell the subject whether or not they passed the vision test; all 
people should participate in the experiment, regardless of 
whether or not their data will be used.

ITU-R BT.500 and ITU-T P.910 require that subjects be 
screened for normal visual acuity (e.g., with glasses if worn) and 
normal color vision. Test the subject’s distance vision using the 
Snellen eye chart at a range similar to that used during the exper-
iment. Test color vision with the Ishihara Color Blindness plates 
under natural lighting (i.e., sunlight). The Ishihara plates should 
be replaced after about five years, because the colors fade, render-
ing the test inaccurate. These plates typically only test red–green 
color blindness, as that is the most common type.

There is some question as to whether there is a difference 
between ratings from people with normal vision and people who fail 
the distance vision or color vision test. Pinson et al. [15] found no 
significant difference in ratings; however, that was not the primary 
goal of the reported experiment. Moorthy et al. [30] present argu-
ments against the use of vision tests. Regardless, these vision tests 
convey to the subject that they are participating in an important sci-
entific experiment and should pay attention to their rating task.

SUBJECT DEMOGRAPHICS  
AND CONVENIENCE SAMPLING
The ideal in psychology is random sampling that perfectly matches 
the demographics of the population to be studied. This is most eas-
ily accomplished by outsourcing subject recruitment to a special-
ized company that performs market research through focus groups. 
The drawback is the high cost. Most video quality subjective tests 
use convenience sampling—i.e., a population of subjects that are 
easy to obtain. Universities tend to recruit students; large companies 
tend to recruit employees. To better represent the larger population, 
consider using a temporary hiring agency or online advertisements.

The problem with convenience sampling is that the research 
results may not generalize to the larger population. For video 
quality subjective testing, the relationships between variables 
will remain correct—but the MOS values will not be absolute 
(see Pinson et al. [15]). Be careful not to generalize your conve-
nience sampling results into absolute thresholds (e.g., MPEG-2 
at this bit rate will result in a quality of 4.0 or better).

INSTRUCTIONS, TRAINING SESSIONS, 
AND QUESTIONNAIRES
Instructions must be written out and agreed upon before the test-
ing begins. All subjects must receive the same instructions. This 
eliminates one potential source of subject bias. The instructions 
should describe the rating cycle, the quality scale, how to record 
ratings, quirks of your playback system or environment, behavior 
to be avoided, and the scenario (e.g., watching free video clips on 
a mobile device and watching a pay-per-view movie). The instruc-
tions should include: “Please do not base your opinion on the 
content of the scene or the quality of the acting.” Still, ratings 
inevitably include both the clip’s artistic quality and its technical 
quality. This is why subjective tests normally include the original 
video for comparison. After presenting the instructions, ask the 
subjects if they have any questions.
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The training session immediately follows the instructions. The 
training session serves two purposes. The first is to demonstrate 
the task. This is easily accomplished with two or three rating 
cycles. The second purpose is to familiarize the subject with the 
range of quality and type of impairments in the experiment. This 
may take much longer (e.g., 5–20 sequences). The SRC used for 
training session should not appear in the rest of the experiment.

A questionnaire can be used after the rating sessions, to 
gather additional information. Questionnaires can potentially 
provide feedback on problems the subject had with the test, 
whether or not the subject understood the task, and whether the 
subject noticed a problem with your test setup. A written ques-
tionnaire is preferable to asking questions aloud because people 
are more likely to be blunt and provide additional information. 
Questionnaires can also be used to understand QoE (see the sec-
tion “Data Analysis Techniques”). No standard questionnaire 
exists today.

WRITING THE REPORT
The ultimate goal of a video quality subjective test inevitably 
includes publishing the results, either internally or externally. The 
report of results should fully describe

■■ the goal of the experiment
■■ the environment (e.g., monitor brand and model, lighting

level in lux, viewing distance in screen heights, and picture of
environment)

■■ the test methodology (e.g., ITU recommendation and any
departures)

■■ the rating method
■■ the SRC (e.g., quantity and sample frames)
■■ the HRC (e.g., quantity, coding algorithm, bit rate, and

transmission error level)
■■ the experiment design (e.g., full matrix or partial matrix or

other, number of PVS)
■■ the test sessions (e.g., number, duration, playback mecha-

nism, playback compression characteristics, and software
used to control the test)

■■ the subjects (e.g., number of, age and gender distribution)
■■ the mechanism used to obtain subjects
■■ the data analysis results.

Always include a picture of the viewing environment in the
report. This will provide readers with an improved understanding 
of the environment (see Figure 8). Brunnström et al. [31] is an 
example of a superior experiment report. 

For privacy reasons, the names of subjects should not be 
mentioned in any report. Care should be taken when explicitly 
mentioning vendor names. If the experiment was not designed 
to directly compare the quality of those vendors’ equipment, a 
comparative analysis might be biased. In such cases, the vendor 
names should be omitted from external reports.

DATA ANALYSIS TECHNIQUES
Any data analysis is divided into three specific steps: clean the 
data, choose the correct analytical technique (this step should 
be done before the subjective study is run), and interpret the 

results. Each step’s method has to fit the problem under investi-
gation. To begin, key statistical concepts will be described.

MEASUREMENT SCALES, AGREEMENT, 
AND ASSOCIATION
The values related to a particular variable (e.g., bit rate) can be 
measured in different ways [32]. Measurement scales are classi-
fied and divided into four types: ratio, interval, ordinal, and nom-
inal. For each type of measurement scale, correct statistical 
techniques exist and should be used. The ratio measurement 
scale makes it possible to define a distance between any two val-
ues and compute their ratio. For example, the distance between 
3 Mbit/s and 6 Mbit/s is 3 Mbit/s, and the second bit rate is two 
times larger than the first. With the interval measurement scale, 
the distance between each point is the same but the measured 
numbers are arbitrary. For example, consider encoder bit rate 
setup categorized to three values 1= 3 Mbit/s, 2= 5 Mbit/s, and  
3= 7 Mbit/s). The measured values 1, 2, and 3 cannot be com-
pared using a ratio (i.e., 3 does not have bit rate three times as 
high as 1), but the distance between 1 and 2 is the same as the 
distance between 2 and 3. With an ordinal measurement scale, 
an order of values can be found but exact distances cannot. For 
example, bit rate category “medium” has a higher bit rate than 
“low” and lower than “high.” Nevertheless, with an ordinal scale, 
we cannot determine whether a value “low” has the same dis-
tance to “medium” as “medium” to “high.” With nominal, each 
value is different and an order cannot be determined. For exam-
ple, encoders A, B, and C cannot be ordered without focusing on 
a specific feature, like price or encoding speed. 

Agreement means that subjects should give the same quality 
ratings, and we only tolerate differences that are caused by a ran-
dom distribution of measurement noise. On the other hand, associ-
ation requires only that subjects follow the same pattern. So, if two 
subjects agree, they also associate, but the opposite is not true [33]. 
For example, if subject one is always scoring one point lower than 
subject two (where possible), they do not agree at all but they do 
associate perfectly. For subjective experiments focused on quality, 

[FIG8]  A picture of the viewing environment should be 
included in the final report. This sample environment shows 
a sound isolation booth. A Blu-ray player outside the room 
plays audiovisual sequences on a broadcast-quality monitor 
and speakers.
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agreement is not expected, since a subject can be more or less dis-
criminating. On the other hand, if there is no association it can be 
explained only if a subject is more tolerant than average for some 
impairments and less for others. This is not impossible, but an 
experimenter may choose to consider a subject who does not asso-
ciate with others to be irrelevant. Perhaps the rating task was too 
difficult or was not understood properly.

CLEANING THE DATA
Before using any statistical technique, the data has to be 
cleaned. This involves first detecting irrelevant subjects and sec-
ond detecting errors in the experiment setup. Detecting an 
irrelevant subject depends on the way the test was run. It is 
usual to monitor a subject in a lab; in this case, we can be sure a 
subject did the test. If this does not happen, the first screening 
technique is focused on finding out whether a subject actually 
did the test. Gardlo et al. [34] describe some techniques such as 
adding content questions, e.g., “Was a car present in the scene?” 
Such questions reveal whether a subject actually saw a particu-
lar sequence. If a test is run in a controlled environment, 
detecting whether a subject did the test is usually trivial. Never-
theless, the subject could misunderstand the test, the test could 
be too difficult, or the subject might not pay attention. There-
fore, screening is still a necessary and important step.

The screening technique described in the ITU-R Rec. BT-500 
is based on the subject agreement and measuring scale being 
ratios. The basic concept is to measure how often a subject’s 
answers do not fit the confidence interval created by the other 
subjects’ answers. (A MATLAB code for performing this test can 
be found at http://www.its.bldrdoc.gov/resources/video-quality-
research/guides-and-tutorials/subject-screening-overview.aspx.) 
Subjects do not have to agree among themselves, so we will focus 
on techniques based on association rather than agreement.

The most popular way to measure association is the Pear-
son correlation. This technique was used to screen subjects in 
the Video Quality Experts Group (VQEG) HDTV validation test 
plan [35]. The Pearson correlation is based on the assumption 
that the measurement scale is a ratio, and Pearson correlation 
interpretation and tests generally assume the data have a nor-
mal distribution. If the quality scale is short (e.g., ACR), the 
Pearson correlation should be changed to the Spearman corre-
lation, which is based on the weaker assumption that the mea-
surement scale is ordinal. For a short scale, it is difficult to 
assume that the answer distribution is close to normal (espe-
cially if most answers are close to one of the scale borders) and 
that the distances between answers are the same. Computing 
the Pearson or Spearman correlation requires two vectors: ui  
(a single subject’s ratings) and ui  (average of the other sub-
jects’ ratings) for all sequences. The MATLAB Statistics Tool-
box functions are as follows: 

a=corr (ui, udashi, ‘Type’, ‘Pearson’);
	 b=corr (ui, udashi, ‘Type’, ‘Spearman’);

where ui  is denoted by ui and ui  is denoted by udashi.

The question is: At what threshold should a subject be dis-
carded? A correlation that is statistically greater than zero does 
not guarantee that a subject is relevant. A good example 
occurred during a VQEG HDTV test [35], the goal of which was 
to choose the best objective metric for HDTV. For an experi-
ment that used edited sessions on Blu-ray discs, the scoring 
time was too short for one subject, so he did not see the first few 
seconds of some sequences. The Pearson correlation was statis-
tically significantly higher than zero (0.633) but much lower 
than for other subjects’ correlation (the lowest being 0.784 and 
the average 0.877). The VQEG rule is that a subject should be 
discarded if the correlation is below 0.75 for television (TV) and 
mobile applications. The disadvantage of using correlation for 
data cleaning is that the correct threshold must be found exper-
imentally, based on how difficult it is for subjects to evaluate a 
particular service. The 0.75 threshold cannot simply be used for 
new services (e.g., 3-D TV, ultraHD) or a different association 
metric (e.g., Spearman correlation).

These two methodologies (i.e., as described in Rec BT.500 and 
based on Pearson correlation analysis) are by far the most com-
monly used to detect irrelevant subjects. They rely on the ratio 
measuring scale. Since subjective experiments are often per-
formed on a short measuring scale, which is ordinal rather than 
ratio, some different methods are needed. Adejumo et al. [33] and 
Gibbons [36] provide descriptions of numerous different agree-
ment and association metrics. A commonly used agreement met-
ric using an ordinal scale is named Cohen’s Kappa coefficient. It 
is widely used by the psychology community when subject agree-
ment is especially important. The Kappa coefficient can be com-
puted using the MATLAB function created by Cardillo [37]. No 
more details are presented in this article since association rather 
than agreement metrics should be used in case of quality tests. 
Nevertheless, the interested reader can find details in [33].

Kendall’s tau can be an alternative solution when an associa-
tion metric is needed and the measuring scale is ordinal. Kendall’s 
tau is the difference between the probability of concordance  cr  
and discordance dr , given by: .c dx r r= -  Kendall’s tau is an 
easy to interpret parameter, since it refers to concordance and dis-
cordance between two vectors. Gibbons [36] provides more details 
on when Kendall’s tau should be used. The MATLAB function is 

a=corr (ui, udashi, ‘Type’, ‘Kendall’);

A subject can have a low association with other subjects 
because the subject did not pay attention to the task or because 
an error occurred in the experiment setup. While an experiment 
is being run, many different problems can occur. An intermittent 
video playback problem in the test interface can cause occasional 
added visual impairment (e.g., freezes during a sequence that 
should have played smoothly). Video clips can be played in the 
incorrect order, so that the written video clip/rating association is 
incorrect (e.g., an editing error in a prerecorded sequence, a cod-
ing bug in automated playback software). Some sequences can be 
different from the description (e.g., encoded at the wrong bit 
rate). A time synchronization error can occur between subject 
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ratings and videos (e.g., a subject scoring on paper rating sheets 
scores clip N in the box for clip N+1). All of these problems have 
been observed by the authors of this article.

Specific problems call for specific solutions, so it is impossible to 
describe a general procedure. Nevertheless, our experience shows 
that the following three steps are very helpful. First, if prerecorded 
sequences are used, the results obtained for a PVS should be statisti-
cally the same when it appears in different recordings. Second, the 
quality ratings can be compared to the experimenter’s expectations, 
and sequences with large differences should be checked. Third, the 
association between users within sessions should be checked. If a 
user is well associated with others for one session and poorly for 
another, this indicates a problem with that session.

The most difficult problems to detect are rare interface failures 
resulting in degradation of the watched video (e.g., the automated 
test software pauses during video playback for 2% of the sequences). 
This problem is best detected during the pretest (e.g., the experi-
menter takes the pretest, and then compares his or her scores to the 
expected quality). Intermittent playback failures will cause all sub-
jects to score atypically low quality for a few, random clips. One way 
to find such inconsistencies is to compare a user’s association with 
other users for all sequences with that user’s association with other 
users for a subset of sequences. If the percentage of errors in a subset 
is higher than in the whole set it is easier to detect them. 

If the data cleaning eliminates more than two or three subjects, 
something may be wrong with your test procedure. To put this into 
perspective, only one of the 214 subjects in [15] was eliminated for 
being irrelevant (see [38] to view the individual subject ratings).

DATA ANALYSIS
After screening subjects and ensuring that all of them performed 
the experiment properly, the final and most important analysis 
can be run. The section “Goal of Experiment and Design Conse-
quences” described the different reasons to run subjective experi-
ments. These different reasons call for different data analyses.

ANSWERING A QUESTION
An experiment designed to answer a question contains different 
conditions, which are most often different HRCs but could also be 
different subjects or different SRCs. Different conditions generate 
groups of results that can be compared to answer specific ques-
tion. Therefore, answering a question can be reduced to compar-
ing subsets of subjective experiment results. The most common 
way to compare two groups is to answer the question of whether 
the results are statistically the same or not. This question will be 
answered with a specific significance level. Most often, 5% signifi-
cance (i.e., 95% confidence) is chosen. This is the default in many 
MATLAB statistical tests and is specified as 0.05.

The most popular technique for comparing two groups is 
the Student’s t-test. The goal of the Student’s t-test is to vali-
date if the difference between the mean values of two groups 
has a particular value. For example, if our goal is to validate 
whether the quality obtained for HRC 1 and HRC 2 are the 
same we should compare vectors u 1  and .u 2  Each element of 
the ui  vector is a value obtained for the same HRC with 

different other conditions (e.g., SRCs or repetitions). It is very 
important to have the same order of conditions in both vec-
tors. The MATLAB function for computing the Student’s t-test is:  
[h, p]=ttest(u1-u2); where h is one if the difference is 
statistically different from zero and zero if it is not, and p is the 
corresponding p-value, which has to be larger than 0.05 to con-
clude that the obtained difference is not statistically significant.

If the goal is to compare multiple groups, then the method-
ology and significance level must be adjusted to maintain the 
same significance level for a group as for single comparison. 
The commonly used methodology for comparing multiple 
groups is one-way analysis of variance (ANOVA). The MATLAB 
anova1 computes one-way ANOVA. A handy way to call this 
function is to specify a vector of all compared values (e.g., 
MOSs) and a vector of tags describing groups. For example, u=
[2.3,3.2,1.2,2.4,3.2] and g=[‘A’,’B’,’B’,’A’,’C’] 
means that the first and fourth values belong to group A, the sec-
ond and third to group B and the last one to group C. anova1 is 
called using: p = anova1(u,g); where u is the compared val-
ues vector, g is the grouping vector, and output p is the p-value. 
Similarly to ttest, a value of p smaller than 0.05 indicates that 
at least one group is different.

The disadvantage of both the Student’s t-test and ANOVA is 
the assumption that the data come from a normal distribu-
tion, i.e., they follow a specific distribution and can be mea-
sured on a ratio or interval scale. This can be validated by the 
Kolmogorow–Smirnow (small sample) or chi square (large 
sample) test. If one of those assumptions is not met, different 
statistical methods should be used. The Student’s t-test should 
be changed to the Mann–Whitney U-test and the one-way 
ANOVA should be changed to the Kruskal–Wallis test. The 
Mann-Whitney U-test compares medians not means, and as 
such it needs only an ordinal measuring scale. The equivalent 
of this test in MATLAB is [p, h] = ranksum(u1, u2); 
where the p, h, u1, and u2 parameters are the same as for 
the ttest function but ordered differently. The multiple-group 
comparison version of the Mann–Whitney U-test is the Kruskal–
Wallis test, which can be called similarly to the anova1 
function: p = kruskalwallis(u,g);

The discrimination powers of the Student’s t-test and the 
ANOVA test are greater than those of the Mann–Whitney U-test 
and the Kruskal–Wallis test. The cost for this increased discrim-
ination is the requirement of a normal distribution and interval 
measuring scale. Choosing the Mann–Whitney U-test or Krus-
kal–Wallis test leads to more conservative conclusions. If a test 
with the weaker assumption shows differences between groups, 
then the Student’s t-test and ANOVA will show it as well. The 
opposite is not necessarily true.

A useful MATLAB tool for comparing multiple groups is the 
multcompare function. Both anova1 and kruskalwallis 
functions can return more than one parameter. After three 
parameters are returned, multcompare can be run by using 

[p,table,stats] =  kruskalwallis(u,g); 
multcompare(stats); 
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This function generates a handy interactive plot that makes it 
easy to compare groups.

TRAINING A METRIC OR ALGORITHM
Subjective experiments maximize measurement accuracy, but 
also increase cost and time taken. They cannot be used to moni-
tor a service. Therefore, it is a common practice to build a met-
ric that objectively emulates a video quality (i.e., MOS). When 
training a metric or algorithm, the goal is to find a function 
that links explanatory variables to a dependent variable. Exam-
ple explanatory variables are bit rate, packet loss ratio, quality 
estimation parameters extracted from the video, and subject 
age. The dependent variable is most often video quality.

The easiest solution is to design a linear model using linear 
regression. A linear model is a linear function of model param-
eters, but not necessary a linear function of explanatory vari-
ables. Nonlinearities in the explanatory variables are detected 
and removed (e.g., using square or square root functions), and 
it is common to use interactions between explanatory vari-
ables (e.g., the product of two explanatory variables). Accord-
ing to the above description an example linear model is given 
by the equation ,log logu a a b a ta a b ta0 1 2 3= + + +  where u  
is estimated MOS, ai  are model parameters, b  is a bit rate, 
and ta  is the temporal activity of the SRC. A linear model can 
be estimated in MATLAB by the glmfit function, which 
returns both the estimated values and the p-values of each 
estimated parameter.

While training the linear model, the researcher examines and 
understands the relationship between the candidate explanatory 
variables and the dependent variable. Example techniques include 
examining the ability of a single explanatory variable to predict 
the dependent variable (e.g., using the Pearson correlation or 
root mean square error), and plotting the explanatory variable 
against the dependent variable to find nonlinearities or outliers. 
Fox [39] provides instruction on techniques for applying linear 
regression analysis. The advantage of linear regression is that the 
resulting linear model is typically easy to explain and understand.

Alternatives to classical linear regression are methods based 
on machine learning. Many techniques are available. In this 
article, only three are mentioned. Genetic programming-based 
symbolic regression analyzes a large number of different mod-
els, thus helping to build a model that is similar to a linear 
model [40]. The advantage of this technique is that the output is 
easy to interpret. Partial least squares regression is more diffi-
cult to interpret but has the advantage of optimizing explana-
tory variables. Because of the use of principal component 
analysis, the final output is as simple as possible for a given pre-
diction accuracy using explanatory variables that contain the 
most significant information [41]. Random neural networks are 
even more difficult to interpret but can approximate different 
nonlinear functions [42].

Machine-learning algorithms must be used with care to not 
over train the model. A typical machine-learning model con-
tains lots of parameters, and relatively little subjective data are 
typically available to train a video quality metric.

All of the previously presented solutions model MOS (i.e., the 
average of many ratings), not the actual subjective ratings. If 
quality is measured on a scale with a small number of levels, each 
rating level’s probability can be predicted using the generalized 
linear model (GLM). GLM is able to model multinomial distribu-
tion. A detail description of using GLM is given in [43].

ANALYZING A METRIC OR ALGORITHM
To analyze a metric, its predictions and subjective results have 
to be compared. The algorithm that fits the subjective data best 
should be chosen. This analysis has to address two specific reali-
ties of subjective experiments. Previous research shows that two 
instances of the same subjective experiment repeated in two dif-
ferent laboratories can have high association (measured by cor-
relation) but the results are not identical [3], [15]. Since the 
results of the two subjective experiments results have high asso-
ciation but not necessarily agreement, a metric should associate 
with the validation subjective experiment but it does not have to 
agree (i.e., an offset is possible).

The final conclusion is that metrics should be validated by 
association rather than by agreement, or agreement should be 
measured for the metric after the values have been transferred 
to a common scale. In addition, two metrics can differ due to 
randomness related to the subjective experiment. Such metrics 
should be called “the same” even if the agreement or association 
metric is superior for one of them. The methodology for 
addressing the problems described above is used by VQEG and is 
described in ITU-T Rec. P.1401.

THOUGHTS ON QUALITY OF EXPERIENCE
We have provided detailed information for conducting video 
quality subjective tests. Video quality is one aspect of a larger 
topic—QoE. Compared to video quality testing, QoE testing 
is in its infancy, and no step-by-step tutorial is available at 
this time. Instead, this final section summarizes some QoE 
definitions and frameworks. This overview points out limita-
tions of video quality subjective tests and identifies areas 
where QoE issues impact experiment design, monitor selec-
tion, subject demographics, post-test questionnaires and, as 
a consequence of these choices, the strength of the conclu-
sions that can be reached.

Video quality is just one aspect of QoE. According to Le Callet 
et al. [44], QoE is the degree of delight or annoyance the user 
receives from an application or service. It results from the fulfill-
ment of the user’s expectations (in light of his or her personality 
and current state) with respect to the utility and/or enjoyment of 
the application or service. More succinctly, QoE is a measure of 
how well a service or an application meets the user’s expectation 
of quality (EoQ) [45]. Different artifacts arising along an end-to-
end service delivery chain may result in QoE that does not meet a 
user’s EoQ. However, each service provider is expected to aim at 
the condition QoE = EoQ [46], ensuring revenues, reducing 
churn, and increasing customer satisfaction.

Today, each of us is a consumer of multimedia services and 
knows how many variables influence our EoQ. Therefore, a 
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holistic QoE approach should span the whole telecommunica-
tion ecosystem combining user behavior, technical issues, and 
business models as proposed in [44] and [47].

Batteram et al. [45] propose three dimensions that can be used 
to express QoE: service availability, service responsiveness, and 
media quality (i.e., audio and video quality). Service availability is a 
measure of whether the user can use the desired service, while 
responsiveness is the time to get the service answer. Media quality 
relates to all artifacts generated by compression and packet net-
work delivery that deteriorate the user’s perception. Audio and 
video quality subjective tests measure media quality, but fail to 
quantify the impact of service availability and responsiveness.

On the other hand, Marez and Moor [46] point out that QoE 
may depend on many service context-of-use factors (i.e., the 
actual conditions under which an application is used). The ser-
vice has to be paid for through some provider-defined business 
mode (e.g., transaction, subscription, and advertisement). The 
underlying network technology (e.g., wired, wireless, and satel-
lite) impacts QoE, as do other technological factors. Personal, 
social, cultural, and education issues are influential, and a user’s 
EoQ is modified by the location or device used for service con-
sumption. There is interest in extending video quality subjective 
testing techniques but as of yet no established solution (e.g., a 
way to measure MOS that accounts for screen size differences).

The multivariate structure of QoE may suggest initially that, 
from the QoE analytical modeling point of view, numerous 
analysis models could be deployed to understand the relation-
ships between variables and their relevance to the actual QoE 
problem being studied [44]. An expert panel [46] found about 60 
multidisciplinary methods (both qualitative and quantitative) 
suited for QoE investigations.

While the rating scales in the section “Ethics and Informed 
Consent” are intervals (which define the ratio, interval, ordinal, 
and nominal measurement scales), QoE variables are often ordi-
nal (e.g., satisfied, neutral, and dissatisfied) or nominal (e.g., gen-
der, user profile, device, and content type). These category 
variables differ radically from interval variables because distances 
between categories are not defined and subjects can interpret the 
categories differently. Thus, most of the techniques from the sec-
tion “Data Analysis Techniques” are inappropriate. The proper 
tool for dealing with such unmeasurable variables is categorical 
data analysis (i.e., multicategory logit models). These techniques 
are more complicated, and the results derived are a bit more diffi-
cult to interpret.

Customer satisfaction surveys solve this problem by using a 
variety of latent trait models (LTMs). For example, the Item Rasch 
Theory is the simplest LTM model. The LTM is a powerful approach 
as it can relate manifest variables (i.e., service features that can be 
readily judged by a tester) with latent traits (i.e., the tester’s experi-
ence with a service)—provided that the questionnaire is properly 
designed. The LTM approach was recently suggested by [48] and 
[49] as a proper tool for 3-D video quality analysis.

In summary, QoE uses multiple dimensions to measure dif-
ferent users’ experiences of service received and relate their 
experiences to parameters of a service delivery chain and a 

service context-of-use. A reliable QoE measurement calls for a 
multidisciplinary approach (e.g., operations research, customer 
satisfaction surveys, and sociology), because of the different 
nature of the variates involved. Users’ experiences may differ 
even if they use the application in the same context and under 
the same network conditions. Therefore, to arrive at a valid QoE 
assessment, it is necessary to conduct tests with large numbers 
of subjects. Although such subjective tests are time and 
resource consuming, emerging crowdsource QoE assessment 
has recently appeared as a solution [50]. QoE is gaining increas-
ing momentum among researchers, service providers, and net-
work operators; this may eventually result in the implementation 
of user-centric services.
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